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At the heart of computational modelling

S. A. Niederer1 and N. P. Smith1,2

1Imaging Sciences & Biomedical Engineering Division, King’s College London, London, UK
2Department of Computer Science, University of Oxford, Oxford, UK

Abstract The link between experimental data and biophysically based mathematical models is
key to computational simulation meeting its potential to provide physiological insight. However,
despite the importance of this link, scrutiny and analysis of the processes by which models
are parameterised from data are currently lacking. While this situation is common to many
areas of physiological modelling, to provide a concrete context, we use examples drawn from
detailed models of cardiac electro-mechanics. Using this biophysically detailed cohort of models
we highlight the specific issues of model parameterization and propose this process can be
separated into three stages: observation, fitting and validation. Finally, future research challenges
and directions in this area are discussed.
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Introduction

Physiology is the study of both the constitutive parts and
the integrated function of biological systems. However,
the advent of ‘-omic’ science has increasingly resulted in
the field being reposed within reductionist frameworks
(Noble, 2008). Despite the aim of many of these
emerging fields to consider all the parts of physiological
systems collectively (Evans, 2000) research endeavours
have consistently focused on quantitating the constituents.
This has led to less attention being paid to understanding
the functional mechanisms and consequences under-
pinning these measurements and observations. At the
same time the cost of data storage is decreasing while
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tools and techniques for rapidly and robustly obtaining
large volumes of biological data continue to develop. This
improved ability to create and store data means that the
underlying physiology of many systems risks becoming
exceptionally well described but still relatively poorly
understood.

Exploiting this growth in data to increase our under-
standing of physiological function is now necessitating
the linking of this, often fractionated, information
over multiple spatial and temporal scales, species
and populations. Conventional intuition-driven analysis
rapidly becomes limiting in these circumstances. Over-
coming these limitations is increasingly motivating,
and in some cases even requiring, the use of
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computational and mathematical models to integrate
data within biophysically constrained physiological
frameworks (Davidson et al. 1995; Hernandez &
Kambhampati, 2004). The potential application of this
type of computational approach is widespread and
has been previously recognised in multiple reviews.
A central theme in the exemplar cases provided in
much of this literature is the study of complex systems
where experimental data alone have failed to provide
functional insight. In these systems, where sufficient
experimental data are available to characterise the under-
lying complexity, computational techniques have been
used to formalise and represent the underlying system
biophysics. Using these quantitative frameworks multiple,
often disparate, data sets have been linked together to
provide insight not available through observation alone.

Specific examples of the successful application of
this approach span multiple spatial scales. In genetics
where, despite comprehensive genome sequences now
being available for multiple species, many aspects of
gene function and regulation remain elusive (Benfey
& Mitchell-Olds, 2008). Directly addressing this issue,
computational models have begun to expose and unravel
some of the intrinsic complexity of gene regulation and
the link between genotypes and phenotypes (Collins
et al. 2003). The elements of non-linear feedback
mechanisms, multiple agents and significant quantities
of data, common in genetics, are also present in the
simulation and computational analysis of cellular physio-
logy and function in systems biology (Kitano, 2002;
Butcher et al. 2004). These models at the cellular
scale provide the additional ability to simulate inter-
actions between proteins and molecules, offering a link
between cellular patho-physiology with pharmacology

and drug treatments (van de Waterbeemd & Gifford, 2003;
Deisboeck et al. 2009). Cellular scale models also enable
the integration of information at the increasing spatial
scales of the whole organ and body. These measurements,
when at the scale of the organ, often represent emergent
behaviour resulting from the integrated behaviour of
the systems constitutive components. Applying models
to these data provides an essential mechanism to link
between organ scale and clinically relevant measurements
with underlying cellular and subcellular function (Lee et al.
2009).

Despite the potential of this approach to derive function
from observations, linking models to data remains a
significant challenge. While this issue is generic, to provide
a specific context with a set of concrete, and we hope
relevant, examples from our own research community, we
will focus in the remainder of the article below on the
challenges faced in linking coupled electrophysiological
and mechanical cardiac models (Fig. 1) to experimental
and clinical data. Although the examples provided below
are taken from this specific research area, the breadth of
spatial and temporal scales and applications means these
examples are generally transferable to other computational
physiology modelling systems.

Models of cardiac electromechanics have been applied
at the genetic (Campbell & McCulloch, 2011), cellular
(Niederer & Smith, 2007; Campbell et al. 2008), tissue
(Niederer & Smith, 2008; Land et al. 2011; Nordsletten
et al. 2011) and organ scales (Nickerson et al. 2005;
Campbell et al. 2009; Niederer & Smith, 2009; Gurev
et al. 2010, 2011; Kerckhoffs et al. 2010). Most recently,
significant technical advances have led to a renewed
focus on translation of this approach to the clinic (Rudy
et al. 2008) with computational models being used to

Figure 1. Schematic showing the multi-scale relationship between cellular electrophysiology and
contraction and whole organ activation and deformation
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simulate human cardiac function (Keldermann et al.
2010) and specific patient cases (Aguado-Sierra et al.
2011; Niederer et al. 2011a,b). A selection of these
models is presented in Fig. 2. This transition towards
clinical applications in electromechanics models parallels
advances in defibrillation (Luther et al. 2011; Tandri
et al. 2011) and drug interaction (Mirams et al. 2011)
modelling studies and places renewed emphasis on the
issues discussed above. Specifically, while it has significant
potential to positively impact human health, the use of
simulation results to inform treatment decisions only
increases the importance of rigorously describing the link
between data to model parameters and simulation results.
The links between models and data are formed during
three distinct phases in the model development process:
observation, fitting and validation.

Observation

Consistent with the scientific method, the motivation
for developing a computational physiology model begins
with an observation, question or hypothesis. Intrinsically
mathematical models are approximations providing a
finite caricature of the unbounded real system. The
initial observation is used to define the limits and
specifics of the system under study, including the species,
temperature, age and spatial and temporal scales of
the model (Smith et al. 2007; Niederer et al. 2009).
In clinical and experimental studies the impact of this
information is generally recognized and these values are
routinely reported. Unlike wet lab studies, where new

and intrinsically relevant data from the system of inter-
est are typically clearly presented as results and set apart
from contextual and potentially less relevant external data
introduced in the discussion, computational models are
agnostic to the source or type of data. Unless otherwise
specified, the relevance of data to the system understudy is
not represented in the model. As a result the conclusions
of computational studies are often derived from a mix
of data with varying degrees of relevance to the original
observation.

Defining the limits of the system of interest, explicitly
stating approximations and clearly defining the envelope
within which the model can be applied, provides the
necessary context for interpreting modelling results. In
some cases the system under study is general; for example,
a ventricular, atrial or Purkinje cell, with specific details
such as the temperature, species or specific cell location
not explicitly stated. These models often retain the
potential to provide important generic insights but are
clearly more limited when aiming to represent specific
experimental or clinical systems. While this issue remains
in computational physiology studies, recognition of the
importance of these factors is the trend in the number
of recent computational physiology models now focused
on addressing these issues (Fink et al. 2011). This work
has resulted in second generation models, which integrate
additional data to enhance the temperature and species
consistency of a model parameterisation. This progression
is demonstrated in Fig. 3, which shows the change in
the experimental data dependence between an initial
foundation mouse model (Bondarenko et al. 2004) and
a more recent refinement (Li et al. 2010). Most recently,

Figure 2. Example multi-scale excitation contraction models
Top and bottom panels show end diastolic and end systolic cardiac models, respectively. A, fibre strain patterns in
human CRT patient heart, –0.15 blue to +0.15 red (Aguado-Sierra et al. 2011), B, regional work patterns in CRT
patient case; yellow spheres correspond to scar, blue and red spheres correspond to shortening and elongating
myocardium, and the size of the spheres correspond to the magnitude of the work rate (Niederer et al. 2011a). C,
generic heart model, showing membrane potential, blue –80mV to red +20 mV (Nickerson et al. 2005). D, fibre
orientation in the canine myocardium, where colours trace individual fibres (Gurev et al. 2011).
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this evolution of model specificity has been further focused
in our group to account for specific genetic strains within
a species (Li et al. 2010, 2011).

Fitting

The second link between experimental data and models
in the development process is fitting parameter values.
This fitting process is underpinned by three elements:
labelling data and dependencies, processing data and
determining parameters. To fully describe the fitting
of model parameters to data requires a transparent
description of the link between the value used in the
final simulations and the actual recording made. This
description is provided by accurately labelling the source
of experimental data used to fit model parameters and
labelling the dependency of model parameters on specific
data. Despite the relatively low cost and high value of
comprehensive labelling it is often absent in modelling
studies.

Determining model parameters from experimental
data often requires a degree of data processing. When
measurements are made from the system under study,
data processing can involve multiple steps with the
raw measurements being transformed, calibrated, filtered
and smoothed to remove noise and infer more physio-
logically meaningful measurements. For example, tension
development in single cardiac myocytes can be calculated
by measuring the bending of carbon tweezers with
known stiffness (Iribe et al. 2007), the cytosolic Ca2+

concentration or the cell membrane potential can be
calculated from fluorescence measurements (Bishop et al.
2007; Li et al. 2010) and endocardial electrical activation
times can be extracted from non-contract catheter
mapping systems (Niederer et al. 2011a). The process of
transforming these indirect measurements into physio-
logical values that feed into the model development
process is thus clearly important for model fidelity and
reproducibility. Once the data are processed the physio-
logical values can then be used to determine model
parameters.

Figure 3. Computational model phylogenic tree showing the experimental data dependencies of the
Bondorenko et al. (2004) (A) and Li et al. (2010) (B) models
Trapeziums correspond to modelling studies. Squares correspond to model components (ion channels, buffers,
transporters, etc.). Ellipses correspond to experimental studies. The colour scheme corresponds to the temperature
of the data and the letters correspond to the species where M is mouse, GP is guinea pig, H is human, Rat is rat,
S is sheep, SF is starfish, X is Xenopus, C is canine, F is ferret, Ca is calf, Ne is neuron, BF is bullfrog, SA is squid
axon, B is bovine, R is rabbit and NA is not defined.
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In some cases it is not possible to make direct
measurements in situ or the desired measurement is
confounded by other signals. In cardiac electromechanics
ion channels currents can be isolated in expression
systems, sarcomere kinetics can be measured in skinned
preparations and SERCA-ATPase can be characterized
in sarcoplasmic reticulum vesicles. Although all of these
approaches allow the properties of specific proteins to
be characterised, the isolation process can often have
an unknown effect on function. Expression systems
may lack small but important channel subunits or
post-translational regulation (Tseng-Crank et al. 1990;
Blair et al. 1991; Paulmichl et al. 1991), altering the channel
kinetics. Skinning alters the chemical environment of
the sarcomere and may compromise sarcomere proteins
causing the observed decrease in active tension Ca2+

sensitivity in these preparations (Niederer et al. 2006).
Creating sarcoplasmic reticulum vesicles compromises
the cellular environment, removing potentially important
regulatory mechanisms of SERCA function. Mapping
parameters from these reduced or altered systems
to cardiac myocytes and whole organ systems poses
significant challenges. Previously these differences have
been assumed nominal or parameters from the altered
system have been scaled to match a limited set of in situ
observations (Niederer et al. 2006). However, in the case
of expression systems, recent models that link channel
structure at the protein scale to function (Silva et al.
2009) may provide a novel method for quantitatively
linking expression system measurements to in situ channel
kinetics.

Parameters are typically determined by minimizing a
cost function describing the difference between a model
result and the corresponding experimental or clinical
measurement. In some cases measurements relate directly
to model parameters; for example, the length–tension
relationship in a cardiac myocyte can be measured directly
and can be represented explicitly in the model (Niederer
et al. 2006; Rice et al. 2008). Alternately, model parameters
can be fitted to integrated emergent phenomena, such as
fitting the sodium channel density to achieve a desired
action potential upstroke (Li et al. 2010). In these, often
numerous, situations it is only possible to fit parameters
to these system scale observations. However, the difficulty
in fitting parameters to systemic phenomena is that any
errors from fitting other model components accumulate in
the parameters that are fitted to system scale observations.
This process, thus, can significantly decrease confidence in
the value of parameters estimated using system responses
(Niederer et al. 2009). Once the cost function is defined it
can then be minimized manually or using one of many
minimization algorithms. However, it is important to
note that these approaches are not always successful or
viable due to (1) disparities in model complexity and
information contained in experimental data and/or (2)

non-linearities in the model leading to fitting algorithms
identifying local minima. For cardiac cell models it has
been shown that in some cases it is impossible to fit a
unique set of parameters to the model equations (Sarkar
& Sobie, 2010). This difficulty in fitting parameters has
been addressed by either manually fitting parameters or by
developing the models in a form that enables parameters
to be directly identifiable (Fink & Noble, 2009). The
inclusion of sensitivity studies has also been adopted to
provide additional information regarding the dependence
of model outcomes on specific model parameters (Li et al.
2010; O’Hara et al. 2011). The goal of these sensitivity
analyses is to separate model parameters into those that
have a significant impact on model outcomes and those
that have only a nominal effect. The parameters that
have a significant impact must all be well constrained by
experimental data; if an important parameter is poorly
constrained this significantly reduces the confidence in
any conclusions drawn from the model results. Conversely
the data requirements underpinning parameters whose
variation is identified as not producing large changes in
key predictions are lower.

Validation

The final crucial stage in model development is validation.
Rather than the validation of a model being considered
binary i.e. a model is validated or it is not, we argue the
degree of validation should be thought of as a spectrum.
At one end there is no validation where the model can
only replicate the data it was fitted to. On the other
end of the spectrum you can show that a unique set
of parameters has been determined from the available
training data and that the model predicts measurements
from an identified set of system-level data not included
in the fitting process (Niederer et al. 2011a; Provost
et al. 2011). The multi-physics nature of cardiac electro-
mechanics models and an insufficient quantity and quality
of data has limited validation in the past. Examples of pre-
vious studies include the combination of models of rat
contraction at room temperature with guinea pig electro-
physiology models at body temperature (Nickerson et al.
2001), using a guinea pig electrophysiology model within
a rabbit geometry (Jie et al. 2010), the development of
whole organ models, where the cellular models were based
on available data at room temperature, which could not be
compared directly against in vivo measurements (Niederer
& Smith, 2009).

As is often the case in computational modeling,
comprehensive validation is not achievable. However, we
assert that in these cases, models compared against limited
data demonstrate that the proposed set of parameters and
equations provide only a plausible representation of the
system under study. Moving to the concept of a plausibility
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spectrum would lead to models demonstrating that
they are highly plausible through multiple independent
comparisons of model predictions and experimental
data. This would, in turn, provide a more transparent
description of the model validation process.

Future perspectives

Improving the link between models and experimental
data is essential if models are to fulfill their role
in linking multiple physiological observations across
disparate spatial and temporal scales with underlying
function. Cardiac electromechanical models have begun to
consider the impact of temperature and species on model
outcomes. However, at present the vast majority of these
models still ignore the dominant predictor of disease: age
(Houle et al. 2010). Models have begun to account for
the effects of age by simulating neonatal cells (Wang &
Sobie, 2008) and the progression of heart failure following
genetic knockout of SERCA over periods of weeks (Li et al.
2011). Accounting for age in computational physiology
models will need to increase as models are used in clinical
applications. This is particularly important in the use of
computational models in drug screening (Mirams et al.
2011; Moreno et al. 2011), where the failure to identify
drugs that adversely affect older unhealthy patients is
because of efficacy being based on experimental studies
using young healthy animals (Lin, 1995).

In addition to age, models will also need to start
to account for biological variations associated with
inter-subject differences in experimental data. Current
cardiac electromechanics models often implicitly aim
to represent population averages or a single individual.
Studies have begun to include the impact of spatial
variability in models with cell types fitted to data from cells
in specific regions of the heart (Campbell et al. 2008; Fink
et al. 2011; O’Hara et al. 2011). However, these models
have yet to account for the intrinsic variation between
individual cells (Bahar et al. 2006) or between individuals
(Lerner & Kannel, 1986). Accounting for this variation
motivates the need for computational frameworks to
move away from a single model methodology to studying
populations of models that can represent the underlying
variability present in an individual’s cells or across a
population of individuals.

In addition to intrinsic variability within experimental
data, as already discussed, measurements also inevitably
suffer from uncertainty due to noise, under-sampling
or bias. Regardless of the cause, models need to take
into account the impact of uncertainty on predictions.
This has motivated our own work in cardiac electro-
mechanics models to provide confidence intervals or
ranges of potential outcomes (Niederer & Smith, 2009)
as opposed to single deterministic predictions.

Current community efforts have led to the use of
standardized languages for publishing models (Hucka
et al. 2003; Garny et al. 2008), open source and/or
freely available simulation software (Garny et al. 2003;
Pitt-Francis et al. 2009; Bradley et al. 2011), and
the availability of models from individual groups and
community repositories (Fink et al. 2011) provides a trans-
parent representation of the model equations, parameters
and solution methods. However, these efforts have yet to
provide a comprehensive format to describe experimental
measurements, data processing, mapping and fitting
methods and a link between data to model parameters.

As demonstrated by cardiac electromechanics models,
computational physiology has a significant role to play
in rationalising data, linking observations to function
and translating laboratory results into clinical contexts.
Embedded within this role there are significant challenges
and opportunities, a number of which have been outlined
above. Ensuring that models transparently define the
system under study, link parameters with data and model
results are compared with data to demonstrate increased
plausibility is a major challenge for the modelling
community. Towards this goal, extensive supplements
describing the model development methodology have
been provided alongside recent modelling studies. If
this trend continues, models will reach their potential
of providing a succinct, complete and transparent
representation of physiological data and function and, in
turn, provide a valuable approach for revealing physio-
logical insight.
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